Sunday 28 February 2016

ब्रह्माण्ड की 13 महत्वपूर्ण संख्यायें

इलेक्ट्रानिक्स फ़ार यु के अक्टूबर 2014 अंक मे प्रकाशित लेख
कुछ संख्याये जैसे आपका फोन नंबर या आपका आधार नंबर अन्य संख्याओं से ज्यादा महत्वपूर्ण होती है। लेकिन इस लेख मे हम जिन संख्याओं पर चर्चा करेंगे वे ब्रह्मांड के पैमाने पर महत्वपूर्ण है, ये वह संख्याये है जो हमारे ब्रह्मांड को पारिभाषित करती है, हमारे आस्तित्व को संभव बनाती है और ब्रह्माण्ड के अंत को तय करेंगी।
ADVERTISEMENT

1. सार्वत्रिक गुरुत्वाकर्षण स्थिरांक( The Universal Gravitational Constant)

Universeयह वर्ष 2014 एक महत्वपूर्ण वर्ष ना हो लेकिन 1665 इस वर्ष से बहुत बुरा था, विशेषतः लंदन वासीयों के लिये। लंदन मे बुबोनिक प्लेग फैला हुआ था, उस समय शहर से बाहर जाने के अतिरिक्त इस महामारी से बचने का कोई अन्य उपाय या औषधी ज्ञात नही थी। बादशाह चार्लस द्वितिय(King Charles II ) ने अपनी राजधानी लंदन से आक्सफोर्ड स्थानांतरित कर दी थी और कैंब्रीज विश्वविद्यालय बंद कर दिया गया था। कैंब्रिज विश्वविद्यालय के एक विद्यार्थी ने अपने गृहनगर वूल्सथोर्पे(Woolsthorpe) जाने का निश्चय किया और अपने अगले 18 महिने आधुनिक विज्ञान के लिये नये दरवाजे खोलने मे बिताये, इस विद्यार्थी का नाम था आइजैक न्युटन
300px-NewtonsLawOfUniversalGravitationहम ऐसे तकनीकी युग मे रह रहे है जिसमे संख्यात्मक(परिमाणात्मक) अनुमान नही लगाये जा सके तो जीना दूभर हो जाये। और परिमाणात्मक अनुमान लगाने मे शायद सबसे पहली सफलता न्युटन के सार्वत्रिक गुरुत्वाकर्षण सिद्धांत(Universal Gravitation) से मीली थी। उनकी अवधारणा के अनुसार दो पिंडो मे मध्य का गुरुत्विय आकर्षण उनके द्रव्यमान के गुणनफल के आनुपातिक तथा उनके मध्य की दूरी के वर्ग के विलोमानुपातिक होता है। अपनी इस अवधारणा से न्युटन ने पता लगाया कि किसी ग्रह की कक्षा एक दिर्घवृत्त(ellipse) के आकार की होती है जिसके एक केंद्रबिंदु(focus) पर सूर्य होता है। जोहानस केप्लर ने ग्रहो की कक्षा के बारे मे यह अनुमान न्युटन से पहले लगाया था लेकिन वह निरीक्षण पर आधारित था। न्युटन ने यह अनुमान गणितिय गणनाओं और गुरुत्वाकर्षण के सिद्धांत के आधार पर लगाया था। उन्होने इस गणना के लिये गणित की एक नयी शाखा कलन गणित(calculus) भी खोज निकाली थी।
यह एक दिलचस्प तथ्य है कि इस लेख के तेरह स्थिरांको मे से गुरुत्विय स्थिरांक(G) सबसे पहले खोजा गया है लेकिन इसका मान सबसे कम सटिक रूप से ज्ञात है। इसकी सटिकता मे कमी का कारण यह है कि यह बल अन्य सभी मूलभूत बलों मे सबसे कमजोर बल है। न्युटन के लंदन छोड़कर जाने की तीन शताब्दियों बाद  पृथ्वी का द्रव्यमान 6 x 10‍24 किग्रा होने के बावजूद मानव इस बल को मात देते हुये एक रासायनिक राकेट के प्रयोग से प्रयोग द्वारा पृथ्वी के गुरुत्वाकर्षण के बाहर एक उपग्रह स्पूतनिक कक्षा मे भेजने मे सफल हुआ था।
सार्वत्रिक गुरुत्वाकर्षण स्थिरांक G: 6.67×10−11 N·(m/kg)2

2. प्रकाशगति(The Speed of Light)

LightSpeedमध्ययुग मे तोप के आविष्कार से यह सिद्ध हो गया था कि ध्वनि की गति सीमित है, तोप के गोले की रोशनी को , उसके विस्फोट की आवाज से पहले देखा जा सकता था। उसी के पश्चात बहुत से वैज्ञानिको को जिनमे महान गैलेलीयो भी शामिल थे लगने लगा था कि प्रकाशगति भी सीमित होनी चाहिये। गैलेलीयो ने इसे प्रमाणित करने के लिये दूरबीन और प्रकाश स्रोत लिये दूरी पर खड़े व्यक्तियों के साथ एक प्रयोग भी किया था। लेकिन प्रकाश कि अत्याधिक तेज गति और 17 वी शताब्दी की तकनीकी सीमाओं के कारण यह प्रयोग असफल रहा था।
उन्नीसवीं सदी के अंत तक तकनीक और प्रयोगविधियों मे इतना विकास हो गया था कि प्रकाशगति को उसकी वास्तविक गति के 0.02 समीप मान तक माप लिया गया था।
अलबर्ट मिशेलसन और एडवर्ड मार्ले (Albert Michelson and Edward Morley) ने दिखाया कि प्रकाशगति उसकी दिशा पर निर्भर नही करती है। इस प्रयोग के परिणामो मे आइंस्टाइन को उनके प्रसिद्ध कार्य सापेक्षतावाद के सिद्धांत के लिये मार्ग दिया जोकि 20 वी सदी की सबसे महत्वपूर्ण खोज थी और शायद अब तक की भी।
अक्सर यह कहा जाता है कि प्रकाश से तेज यात्रा असंभव है। यह सही है कि कोई भी भौतिक वस्तु प्रकाश से तेज यात्रा नही कर सकती लेकिन हमारे कंप्युटर प्रकाशगति के निकट गति से सूचना संसाधन करते है उसके बावजूद हम दस्तावेजों के डाउनलोड होने के लिये अधिरता से इंतजार करते है। प्रकाशगति तेज है लेकिन निराशा की गति उससे भी तेज है।
c=299,792,458 m/s

3. आदर्श गैस स्थिरांक(The Ideal Gas Constant)

GasConstantsसत्रहवी शताब्दी मे वैज्ञानिको पदार्थ की तीन अवस्थायें ही ज्ञात थी, ठोस,द्रव तथा गैस(चौथी अवस्था प्लाज्मा की खोज इसके सदीयों पश्चात हुयी है)। उस समय ठोस और द्रव के साथ प्रयोग करना गैस की तुलना मे कठिन था क्योंकि ठोस/द्रव मे किसी भी परिवर्तन को उस समय के उपकरणो से मापना आसान नही था। इसलिये अधिकतर प्रायोगिक वैज्ञानिक मूलभूत भौतिकी नियमो को खोजने के लिये प्रयोगो मे गैस का प्रयोग करते थे।
राबर्ट बायल(Robert Boyle) शायद ऐसे पहले महान प्रायोगिक वैज्ञानिक थे और वे वर्तमान प्रायोगिक विधि की आधारशीला रखने वालो मे से है जिसमे किसी भी प्रयोग मे एक या एकाधिक ही कारक मे परिवर्तन कर अन्य कारको पर परिवर्तन का मापन किया जाता है। पुनरावलोकन मे यह प्रत्यक्ष दिखायी देता है लेकिन यह एक दूरदर्शिता भरा कदम था।
राबर्ट बायल ने गैस के दबाव और आयतन के मध्य संबध को खोजा था, इसकी एक सदी बाद जैक्स चार्ल्स(Jacques Charles) तथा जोसेफ गे लुसाक(Joseph Gay-Lussac ) ने आयतन और तापमान के मध्य संबध खोजा था। यह खोज सफ़ेद जैकेट पहनकर किसी वातावनुकुलित प्रयोगशाला मे आधुनिक उपकरणो के प्रयोग से नही हुयी थी। इस प्रयोग के लिये गे-लुसाक एक गर्म हवा के गुब्बारे मे 23,000 फ़ीट की ऊंचाई पर गये थे, जोकि उस समय का विश्व रिकार्ड था।
बायल, चार्ल्स तथा गे-लुसाक के प्रयोगो के परिणामो को एक साथ सम्मिलित करने पर कहा जा सकता है कि किसी गैस की निश्चित मात्रा मे तापमान, दबाव तथा आयतन के गुणनफल के अनुपात मे होता है। इस अनुपात के स्थिरांक को आदर्श गैस स्थिरांक कहा जाता है।
R=8.3144621(75) J/ K/ mol

No comments:

Post a Comment